701 research outputs found

    Synthesis and characterization of N-t-BOC protected pyrrole-sulfur oligomers and polymers

    Get PDF
    The synthesis and characterization of a new class of pyrrole-sulfur compounds is described. These compounds are designed to be precursors for an organic analogue of poly(sulfur nitride). Poly(N-t-BOC-2.5-pyrrolyl sulfide) was prepared from N-t-BOC-2,5-dibromopyrrole by first lithiating this compound with n-BuLi, followed by the addition of bis(p-tosyl) sulfide. Similarly, bis(N-t-BOC-2-pyrrolyl) sulfide was prepared starting from N-t-BOC-2-bromopyrrole. Subsequent selective oxidation with one or two equivalents of m-CPBA quantitatively gave bis(N-t-BOC-2-pyrrolyl) sulfoxide and -sulfone, respectively. Thermal deprotection of the t-BOC groups of the oligomers and the polymer resulted in decomposition of these compounds; the lauer is presumably due to a combination of sulfur-extrusion and polymerization

    Research and development of new tuberculosis vaccines: a review [version 1; referees: 2 approved, 1 approved with reservations]

    Get PDF
    Tuberculosis kills more people worldwide than any other single infectious disease agent, a threat made more dire by the spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Development of new vaccines capable of preventing TB disease and new Mtb infection are an essential component of the strategy to combat the TB epidemic. Accordingly, the WHO considers the development of new TB vaccines a major public health priority. In October 2017, the WHO convened a consultation with global leaders in the TB vaccine development field to emphasize the WHO commitment to this effort and to facilitate creative approaches to the discovery and development of TB vaccine candidates. This review summarizes the presentations at this consultation, updated with scientific literature references, and includes discussions of the public health need for a TB vaccine; the status of efforts to develop vaccines to replace or potentiate BCG in infants and develop new TB vaccines for adolescents and adults; strategies being employed to diversify vaccine platforms; and new animal models being developed to facilitate TB vaccine development. A perspective on the status of these efforts from the major funders and organizational contributors also is included. This presentation highlights the extraordinary progress being made to develop new TB vaccines and provided a clear picture of the exciting development pathways that are being explored

    Research and development of new tuberculosis vaccines: a review.

    Get PDF
    Tuberculosis kills more people worldwide than any other single infectious disease agent, a threat made more dire by the spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Development of new vaccines capable of preventing TB disease and new Mtb infection are an essential component of the strategy to combat the TB epidemic. Accordingly, the WHO considers the development of new TB vaccines a major public health priority. In October 2017, the WHO convened a consultation with global leaders in the TB vaccine development field to emphasize the WHO commitment to this effort and to facilitate creative approaches to the discovery and development of TB vaccine candidates. This review summarizes the presentations at this consultation, updated with scientific literature references, and includes discussions of the public health need for a TB vaccine; the status of efforts to develop vaccines to replace or potentiate BCG in infants and develop new TB vaccines for adolescents and adults; strategies being employed to diversify vaccine platforms; and new animal models being developed to facilitate TB vaccine development. A perspective on the status of these efforts from the major funders and organizational contributors also is included. This presentation highlights the extraordinary progress being made to develop new TB vaccines and provided a clear picture of the exciting development pathways that are being explored

    The role of immune correlates of protection on the pathway to licensure, policy decision and use of group B Streptococcus vaccines for maternal immunization: considerations from World Health Organization consultations.

    Get PDF
    The development of a group B Streptococcus (GBS) vaccine for maternal immunization constitutes a global public health priority, to prevent GBS-associated early life invasive disease, stillbirth, premature birth, maternal sepsis, adverse neurodevelopmental consequences, and to reduce perinatal antibiotic use. Sample size requirements for the conduct of a randomized placebo-controlled trial to assess vaccine efficacy against the most relevant clinical endpoints, under conditions of appropriate ethical standards of care, constitute a significant obstacle on the pathway to vaccine availability. Alternatively, indirect evidence of protection based on immunologic data from vaccine and sero-epidemiological studies, complemented by data from opsonophagocytic in vitro assays and animal models, could be considered as pivotal data for licensure, with subsequent confirmation of effectiveness against disease outcomes in post-licensure evaluations. Based on discussions initiated by the World Health Organization we present key considerations about the potential role of correlates of protection towards an accelerated pathway for GBS vaccine licensure and wide scale use. Priority activities to support progress to regulatory and policy decision are outlined

    Maternal immunization against Group B streptococcus: World Health Organization research and development technological roadmap and preferred product characteristics.

    Get PDF
    Group B streptococcus, found in the vagina or lower gastrointestinal tract of about 10-40% of women of reproductive age, is a leading cause of early life invasive bacterial disease, potentially amenable to prevention through maternal immunization during pregnancy. Following a consultation process with global stakeholders, the World Health Organization is herein proposing priority research and development pathways and preferred product characteristics for GBS vaccines, with the aim to facilitate and accelerate vaccine licensure, policy recommendation for wide scale use and implementation

    Commentaire

    Get PDF
    Therapeutic resistance remains the principal problem in acute myeloid leukemia (AML). We used area under receiver-operating characteristic curves (AUCs) to quantify our ability to predict therapeutic resistance in individual patients, where AUC=1.0 denotes perfect prediction and AUC=0.5 denotes a coin flip, using data from 4601 patients with newly diagnosed AML given induction therapy with 3+7 or more intense standard regimens in UK Medical Research Council/National Cancer Research Institute, Dutch–Belgian Cooperative Trial Group for Hematology/Oncology/Swiss Group for Clinical Cancer Research, US cooperative group SWOG and MD Anderson Cancer Center studies. Age, performance status, white blood cell count, secondary disease, cytogenetic risk and FLT3-ITD/NPM1 mutation status were each independently associated with failure to achieve complete remission despite no early death (‘primary refractoriness’). However, the AUC of a bootstrap-corrected multivariable model predicting this outcome was only 0.78, indicating only fair predictive ability. Removal of FLT3-ITD and NPM1 information only slightly decreased the AUC (0.76). Prediction of resistance, defined as primary refractoriness or short relapse-free survival, was even more difficult. Our limited ability to forecast resistance based on routinely available pretreatment covariates provides a rationale for continued randomization between standard and new therapies and supports further examination of genetic and posttreatment data to optimize resistance prediction in AML

    Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)

    Get PDF
    Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio

    Group B Streptococcal Disease Worldwide for Pregnant Women, Stillbirths, and Children: Why, What, and How to Undertake Estimates?

    Get PDF
    Improving maternal, newborn, and child health is central to Sustainable Development Goal targets for 2030, requiring acceleration especially to prevent 5.6 million deaths around the time of birth. Infections contribute to this burden, but etiological data are limited. Group B Streptococcus (GBS) is an important perinatal pathogen, although previously focus has been primarily on liveborn children, especially early-onset disease. In this first of an 11-article supplement, we discuss the following: (1) Why estimate the worldwide burden of GBS disease? (2) What outcomes of GBS in pregnancy should be included? (3) What data and epidemiological parameters are required? (4) What methods and models can be used to transparently estimate this burden of GBS? (5) What are the challenges with available data? and (6) How can estimates address data gaps to better inform GBS interventions including maternal immunization? We review all available GBS data worldwide, including maternal GBS colonization, risk of neonatal disease (with/without intrapartum antibiotic prophylaxis), maternal GBS disease, neonatal/infant GBS disease, and subsequent impairment, plus GBS-associated stillbirth, preterm birth, and neonatal encephalopathy. We summarize our methods for searches, meta-analyses, and modeling including a compartmental model. Our approach is consistent with the World Health Organization (WHO) Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER), published in The Lancet and the Public Library of Science (PLoS). We aim to address priority epidemiological gaps highlighted by WHO to inform potential maternal vaccination

    “Dogged” Search of Fresh Nakhla Surfaces Reveals New Alteration Textures

    Get PDF
    Special Issue: 74th Annual Meeting of the Meteoritical Society, August 8-12, 2011, London, U.K.International audienceCarbonaceous chondrites are considered as amongst the most primitive Solar System samples available. One of their primitive characteristics is their enrichment in volatile elements.This includes hydrogen, which is present in hydrated and hydroxylated minerals. More precisely, the mineralogy is expected to be dominated by phyllosilicates in the case of CM chondrites, and by Montmorillonite type clays in the case of CI. Here, in order to characterize and quantify the abundance of lowtemperature minerals in carbonaceous chondrites, we performed thermogravimetric analysis of matrix fragments of Tagish Lake, Murchison and Orgueil

    Maternal Infection with Trypanosoma cruzi and Congenital Chagas Disease Induce a Trend to a Type 1 Polarization of Infant Immune Responses to Vaccines

    Get PDF
    Vaccines are of crucial importance to prevent morbidity and mortality due to infectious diseases in childhood. A modulation of the fetal/neonatal immune system (considered immature) toward Th1 or Th2 dominance could modify responses to vaccines administered in early life. T. cruzi is the agent of Chagas' disease, in Latin America currently infecting about 2 million women at fertile ages who are susceptible to transmitting the parasite to their fetus. In previous studies we showed that T. cruzi-infected mothers can induce a pro-inflammatory environment in their uninfected neonates (M+B−), whereas congenitally infected newborns (M+B+) are able to develop a pro-Th1 parasite-specific T cell response. In the present study, we analysed the cellular and/or antibody responses to Bacillus Calmette Guerin (BCG), hepatitis B birus (HBV), diphtheria and tetanus vaccines in 6- to 7-month-old infants living in Bolivia. M+B− infants produced more IFN-γ in response to BCG, whereas M+B+ infants developed a stronger IFN-γ response to hepatitis B, diphtheria and tetanus vaccines and enhanced antibody production to HBs antigen. These results show that both maternal infection with T. cruzi and congenital Chagas disease do not interfere with responses to BCG, hepatitis B, diphtheria and tetanus vaccines in the neonatal period and that T. cruzi infection in early life tends to favour type 1 immune responses to vaccinal antigens
    • 

    corecore